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Abstract
We consider a classification of robust heteroclinic cycles in the positive octant of
R

3 under the action of the symmetry group Z2
3. We introduce a coding system

to represent different classes up to a topological equivalence, and produce a
characterization of all types of robust heteroclinic cycle that can arise in this
situation. These cycles may or may not contain the origin within the cycle. We
proceed to find a connection between our problem and meandric numbers. We
find a direct correlation between the number of classes of robust heteroclinic
cycle that do not include the origin and the ‘Mercedes-Benz’ sequence of
integers characterizing meanders through a ‘Y-shaped’ configuration. We
investigate upper and lower bounds for the number of classes possible for
robust cycles between n equilibria, one of which may be the origin.

PACS numbers: 02.30.Hq, 02.30.Oz
Mathematics Subject Classification: 34C37, 37C29, 70K44

1. Introduction

Heteroclinic cycles have been noted to appear robustly as attracting dynamics in a wide
range of physical problems, notably in population dynamics with models of three or more
competing species [6, 13]. Hofbauer and Sigmund [6] provide numerous references of further
examples in population dynamics where heteroclinic cycles appear in cases where the system
is non-permanent (i.e., where there is an attractor on which one or more of the populations
get arbitrarily close to extinction). Guckenheimer and Holmes analyse an example where
attracting robust cycles can bifurcate from equilibrium dynamics [4]. They also appear in
certain models of rotating convection [2]; see also the review by Krupa [10].

These cycles appear in the attracting dynamics as a slow switching between a sequence of
equilibrium states. This manifests itself as intermittency of trajectories that spend an increasing
amount of time at the equilibria each time they pass near one. Interspersed between these are
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rapid transitions that shadow the connecting trajectories. The period of recurrence increases
as the cycle is approached, giving asymptotically a constant geometric rate of ‘slowing down’.

In all cases where robust heteroclinic cycles arise, a critical ingredient is the presence of
invariant subspaces (forced by symmetries or on other physical grounds) such that connections
are robust within these subspaces. Such robust heteroclinic cycles arise easily for vector fields
in R

n (n � 3) with quite simple symmetry groups, for example O(2), D4 or Z2
3, all of which

occur in models of physical problems, for example in [1, 9, 11, 12, 14–16].
This paper focuses on the classification of vector fields with the symmetry group Z2

3 in
R

3 (we discuss some simpler cases in appendix A). After some basic definitions we introduce
a coding that characterizes cycles up to an appropriate topological equivalence. This is used
to classify robust cycles not including the origin (RHCs) into equivalence classes given by
considering the order of visiting the equilibria on the cycle. We perform a similar classification
of robust cycles including the origin (RHCOs), motivated by a recent investigation into such
cycles [5]. Using this coding we investigate connections between the numbers of classes and
sequences of integers known as ‘meandric numbers’ (see, for example, Di Francesco et al
[3]), and the ‘Mercedes-Benz’ integer sequence. We provide conjectures for upper and lower
bounds for the number of RHCs and RHCOs given certain configurations of axes equilibria.

1.1. Robust heteroclinic cycles

Consider the set XG of C1 vector fields on R
n that respect some group of symmetries G acting

linearly on R
n (such that f ∈ XG means that gf (x) = f (gx) for all x ∈ R

n and g ∈ G). We
give XG the topology of C1 convergence on compact sets. For f ∈ XG we define an ODE
ẋ = f (x) and introduce some definitions that will be used throughout the rest of the paper.
The definition we use for a heteroclinic cycle is slightly more restrictive than that given in
[12]. However, any cycle according to [12] will trivially contain at least one cycle according
to our definition.

Definition 1. A heteroclinic cycle {xi, ci} for an ODE on R
n consists of (k + 1) equilibria

{xi}, i = 0, . . . , k, k � 1 and (k + 1) trajectories ci(t), where ci → xi as t → −∞ and
ci → xi+1( mod k+1) as t → +∞, such that the union of these equilibria and trajectories is
homeomorphic to a circle.

In this paper, we are only interested in heteroclinic cycles that are robust, namely those
that appear for open sets of vector fields in XG. More precisely, we define a robust heteroclinic
cycle (RHC) in the following way.

Definition 2. Given some f ∈ XG, any heteroclinic cycle {xi, ci}, i = 0, . . . , k, is an RHC if
there are �i isotropy subgroups of G such that

• the xi are hyperbolic saddles with dim(Wu(xi)) = 1;
• for all i, {ci} ⊂ Fix(�i);
• the xi+1( mod k+1) are sinks in the fixed-point subspaces Fix(�i).

Furthermore, {xi, ci} is an RHCO if we can choose x0 to be the origin.

This definition implies that for any f ∈ XG with an RHC (RHCO) {xi, ci}, there is an
open set of perturbed vector fields possessing an RHC (RHCO) {yi, di} with equilibria yi near
xi that are connected in the same ordering. This is because the connections ci are from saddle
to sink within some invariant subspace, and hence they are robust to perturbation. In other
words, there will be an open set of g ∈ XG near f that give rise to an equivalent cycle in the
following sense.
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1. 2.

3. 4.

Figure 1. Examples of meanders crossing a fixed oriented line. 1 and 2 show open meanders of
orders 3 and 4 respectively. 3 and 4 show closed meanders of orders 2 and 3.

Definition 3. We say that two RHCs (RHCOs) {xi, ci} and {yi, di} for vector fields f, g ∈ XG

are equivalent if there is a homeomorphism � of R
3 that preserves all symmetry subspaces

(i.e., for all �,�(Fix(�)) = Fix(�)), and such that �(xi) = yi and �({ci}) = {di} for all
i = 0, . . . , k.

Definition 3 implies that the homeomorphism preserves the ordering of the equilibria,
and so in particular the time direction of any heteroclinic cycle will also be preserved under
equivalence.

1.2. Meandric numbers

We recall the definitions of some integer sequences referred to as meandric numbers and their
generalizations. These arise in the classification of curves in the plane, analogous to the
number of ways a road (with no junctions) can cross a meandering river using a fixed number
of bridges [3, 7, 8, 18]. Consider an infinite oriented line L in the plane and fix n a positive
integer. We define a closed meander of order n to be any non-self-intersecting closed curve
in the plane that transversally intersects L at 2n points. We similarly say an open meander of
order n is a segment of a non-self-intersecting curve in the plane starting on one side of L that
transversally intersects L at n points. Two meanders are said to be equivalent if one can be
mapped onto the other via an isotopy of the plane, such that the line L is fixed. Otherwise they
are said to be distinct. A few examples of closed and open meanders are shown in figure 1.
Meandric numbers arise in counting the equivalence classes of meanders as follows.

Definition 4.

• The closed meandric number Mn is the number of distinct closed meanders of order n.
• The open meandric number mn is the number of distinct open meanders of order n.

The first few open meandric numbers are shown in table 1. We first generalize meandric
numbers to consider crossings of more general sets L, see Di Francesco et al [3]. A
configuration L is a union of line segments embedded in the plane (these may join at one
or more points). A closed meander through L is defined analogously to that for a line and the
closed meandric number Mn(L) for the configuration L is defined similarly.

Meandric numbers are known to have a number of interesting properties (for example,
one can see that Mn = m2n−1). However, there is no known formula for calculating meandric
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Table 1. The first 11 entries in the open meander number integer sequence. Note the sequence is
strictly increasing for n � 2.

n 0 1 2 3 4 5 6 7 8 9 10

mn 1 1 1 2 3 8 14 42 81 262 538

Table 2. The invariant subspaces corresponding to different isotropy subgroups for the action of
Z2

3 on R
3.

Typical point Invariant subspaces Isotropy subgroup Generators Conjugates

(0, 0, 0) Origin Z2
3 〈κ1, κ2, κ3〉 1

(x, 0, 0) Coordinate axes Z2
2 〈κ2, κ3〉 3

(x, y, 0) Coordinate planes Z2 〈κ3〉 3
(x, y, z) General point {e} { } 8

numbers directly for any configuration. The first few terms can be found computationally,
for example using a transfer matrix method by Jensen and Guttmann [8]. Jensen [7] gives
an algorithm for calculating Mn that is of computational complexity of order 2.5n, a great
improvement on the method of direct enumeration [18] that is of order 12.26n.

2. Codes of cycles for symmetry group Z2
3

We consider smooth ODEs ẋ = f (x) with f ∈ XG, (x, y, z) = x ∈ R
3 that respect the group

of symmetries G = Z2
3 generated by the reflections κi, i = 1, 2, 3 in each coordinate plane.

These act linearly on R
3 as follows:

κ1(x, y, z) = (−x, y, z)

κ2(x, y, z) = (x,−y, z)

κ3(x, y, z) = (x, y,−z).

In what follows, we restrict our attention to looking at just the positive octant O =
{(x, y, z) : x � 0, y � 0, z � 0}. This is flow invariant as it is bounded by invariant
subspaces (see table 2), and thus any RHC or RHCO contained in it will be restricted to the
boundary, namely the axes and coordinate planes. Note that GO = R

3.
Observe that any f ∈ XG can be written in ‘Lotka–Volterra’ form by noting that

ẋ = xf1(x
2, y2, z2)

ẏ = yf2(x
2, y2, z2)

ż = zf3(x
2, y2, z2)

(1)

for some fi : R
3 → R, and changing to coordinates X = x2, Y = y2, Z = z2 so that

Ẋ = Xf1(X, Y,Z)

Ẏ = Yf2(X, Y,Z)

Ż = Zf3(X, Y,Z).

(2)

We note that in such a setting, Schreiber [17] gives some very weak general conditions that
imply the existence of robust heteroclinic cycles.
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Figure 2. An example of a member of a class of RHCs in R
3 with symmetry group Z2

3 defined
by the coding P1C1P2C2P4C3P3C2. Note that the coding also determines the direction; the same
cycle traced in reverse has a different coding and thus falls within a different class of RHCs.

2.1. A coding system for RHCs and RHCOs in O

We describe a coding for different equivalence classes of robust cycles. For RHCOs we
assume without loss of generality that the unstable manifold of the origin is within the x-axis.
This means that all connections will occur within one of the following invariant subspaces:

C0 = (x, 0, 0), C1 = (x, y, 0), C2 = (x, 0, z), C3 = (0, y, z).

We number the equilibria included in the cycle along the axes, working out from the origin
and numbering the x, y and z axes one after the other. Suppose that there are nx equilibria
on the x-axis, ny on the y-axis and nz on the z-axis (we write n = nx + ny + nz for RHCs or
n = nx + ny + nz + 1 for RHCOs). This gives a unique ordering of the equilibria which for
nx > 0 and ny > 0 is

P0 = the origin

P1 . . . Pnx
= points on x-axis

Pnx+1 . . . Pnx+ny
= points on y-axis

Pnx+ny+1 . . . Pn = points on z-axis.

(3)

In the case where nx = 0, the point P1 is taken to be the first point on the y-axis, and when
both nx = 0 and ny = 0 it is taken as the first point on the z-axis. Our assumption on RHCOs
means that P0 has an unstable manifold on the x-axis and thus P1 will always appear on the
x-axis, and nx > 0. Other than this first connection there can be no further robust connections
along the coordinate axis once we leave P1.

By definition 1, we have that each point Pi appears at most once in the cycle, so w.l.o.g.
we can start coding the cycle at point P1 for RHCs and the point P0 for RHCOs. We build up
the coding for the cycle simply by listing the equilibria and invariant subspaces in the order
they appear on the cycle; for example, a cycle with coding P1C1P2C2P4C3P3C2 is shown
in figure 2.

Theorem 1. Two RHCs are equivalent if and only if they have the same coding.
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Proof. We start by showing that the equivalent cycles must have the same coding. To this
end, suppose that we have two equivalent robust cycles with codings

C1 = P1Cj1Pi1Cj2 . . . Cjn
, C2 = P1Cl1Pk1Cl2 . . . Ckn

.

Since the cycles are equivalent there is an equivariant homeomorphism mapping one cycle to
the other, and in particular preserving all the coordinate planes. Hence we have Cjα

= Clα for
all 1 � α � n. The choice of the planes being fixed forces the equilibria at each stage to be on
the same axes. Since the homeomorphism preserves orientation, the ordering of the equilibria
will be preserved and hence the codings identical.

To show the converse, suppose that we have two RHCs �1 and �2 with the same coding
C = P1Cj1Pi1Cj2 . . . Cjn

. We wish to find a homeomorphism between the two that extends to
the whole space R

3. This we do by a series of extensions. First, we choose L ∈ R with L > 0
such that

�1, �2 ⊆ [0, L]3 ≡ Q.

Let A1, A2, A3 be the intersection of Q with the coordinate axes x, y, z respectively, and let
B1, B2, B3 be the intersection of Q with the coordinate planes xy, xz, yz. Then

∂Q = B1 ∪ B2 ∪ B3 ∪ B4 ∪ B5 ∪ B6

where the other Bi are the remaining faces of the cube ∂Q.
Consider the equilibria of �1 on the axes Ai . Note that these can be mapped bijectively to

the equilibria of �2 on Ai . This can then be extended, for example through linear interpolation,
to some homeomorphism

�1 :
3⋃

i=1

Ai −→
3⋃

i=1

Ai

on the axes.
We can extend this to the faces of Q by considering one of the faces Bj\�1. This is a

union of topological discs since all trajectories in �1 must start and finish somewhere on the
boundaries of Bj (see figure 3). In the same way Bj\�2 will also consist of topological discs.
Hence we can extend �1 to

�2 :
6⋃

j=1

Bj −→
6⋃

j=1

Bj

such that �2|⋃3
j=1 Aj

= �1 and �2|⋃6
j=4 Bj

= id.
To extend the homeomorphism from ∂Q to Q, choose an arbitrary point x in the interior

of Q. We can interpolate along the line from x to y ∈ ∂Q to construct an homeomorphism

�3 : Q −→ Q

such that �3|∂Q = �2.
Finally then we can define an equivariant homeomorphism � : R

3 −→ R
3 on the whole

space, extending �3 by

�(x) ≡
{
κ−1�3(κx) if κ ∈ G such that κx ∈ Q

x otherwise.

Note then in particular � is continuous with continuous inverse for all x ∈ ∂Q since
�(Bj ) = Bj . Hence by definition 3 the two cycles are equivalent. �

Corollary 1. Two RHCOs are equivalent if and only if they have the same coding.
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Figure 3. An example of an RHC �i in Q = [0, L]3 ⊂ R
3. The axes and planes are labelled as in

the proof of theorem 1. Note that all trajectories start and finish on the boundary of the Bj so there
are no closed loops (holes) in the planes. Thus Bj \�i consists of a union of (two-dimensional)
2D regions that are homeomorphic to discs.

Proof. The proof follows in a similar way to theorem 1. �

The following theorem precisely characterizes the set of possible codings of RHCs and
RHCOs:

Theorem 2. Consider a set of distinct points P1, . . . , Pn on the axes bounding O, numbered
sequentially as in (3). The sequence

C = P1Cj1Pi1 · · · Pin−1Cjn

is a coding for an RHC with equilibria Pi if and only if Cj1 
= Cjn
and the following are

satisfied.

(i) The set {i1, . . . , in−1} is a permutation of {2, . . . , n}.
(ii) For every l = 1, . . . n − 1 we have Cjl


= Cjl+1 .
(iii) For every l = 1, . . . n − 1 we have Pjl

⊂ Cil ∩ Cil+1 .
(iv) The crossing conditions in appendix B are satisfied.

Similarly, the word

C = P0Cj1Pi1 · · · Pin−1Cjn

is a coding for an RHCO between equilibria Pi and the origin (where we assume that unstable
manifold of origin is in the x-direction) if and only if

Cj1 = C0, Pi1 = P1, Cjn
= C3

and the conditions (i)–(iv) above are satisfied.

Proof. We first show necessity of the conditions for RHCs. Point (i) follows because each
equilibrium has only one part of its unstable manifold contained withinO. Moreover, equilibria
must be contained in the nontrivial intersection of two invariant subspaces, implying that (ii)
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Table 3. The entries in the Mercedes-Benz integer sequence up to n = 10.

n 0 1 2 3 4 5 6 7 8 9 10

Mn(MB) 3 0 3 1 9 6 45 42 279 320 1977

is necessary. Similarly, (iii) is clearly necessary. Finally, two different connections cannot
intersect, which implies that the crossing conditions (iv) are necessary.

To show sufficiency, embed a number of curves in the planes Cli+1 that connect Pjk
to

Pjk+1 . Conditions (iii) and (iv) imply that one can do this such that none of the curves intersect.
By (i) these curves form a continuous non-self-intersecting loop �. By (ii) we can find vector
fields with hyperbolic saddles at each Pil , such that Wu

(
Pil

)
is one dimensional and contained

within Cjl+1 and such that Ws
(
Pil

) ⊂ Cjl
. Taking a tubular neighbourhood of � we can find a

vector field as above with connections from Pil to Pil+1 lying within Cjl+1 . Such a vector field
will have an RHC with the required coding.

For the analogous result for RHCOs, one can argue in a similar way. �

3. Classification of RHCs and RHCOs in O

3.1. RHCs in O and the ‘Mercedes-Benz’ problem

In this section, we apply the coding of theorems 1 and 2 to classify RHCs in O. We define
N(n) to be the number of distinct classes of RHCs between n equilibria. The first nontrivial
case starts with n = 2. One can see immediately that there can be only six distinct heteroclinic
cycles of this type, namely loops around each axis, one travelling in each direction. Their
codings are as follows:

P1C1P2C2 and P1C2P2C1

P1C1P2C3 and P1C3P2C1

P1C2P2C3 and P1C3P2C2.

For n = 3 we get only two distinct classes of RHC, which contain in particular the example
studied by Guckenheimer and Holmes [4] but without the additional cyclic symmetry property.
The cycles simply pass through one point on each axis. The codings are thus

P1C1P2C3P3C2 and P1C2P3C3P2C1.

As n is increased beyond 3, the number of loops N(n) crossing the axes n times increases
rapidly. The problem of working out the numbers of classes has a strong connection with
meandric numbers (section 1.1 for more details) and in particular is identical (up to a factor
of 2) to the sequence generated by looking at the ‘Mercedes-Benz problem’.

The Mercedes-Benz problem examines the number of ways an undirected loop in the
plane can cross three roads meeting in a ‘Y’ configuration n times. The name seems to be due
to Wilde and Sloane [18]. This corresponds in our earlier notation to meanders through the
configuration L = MB of three lines meeting at a single point, in the style of the Mercedes-
Benz symbol (see figure 4). The first few terms of the sequence Mn(MB) are listed in table 3.
For more observations on this sequence see appendix C.

Lemma 1. The number of classes of RHCs with n equilibria is related to the Mercedes-Benz
number Mn(MB) by

N(n) = 2Mn(MB).
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Figure 4. A closed meander through a ‘Y-shaped’ configuration in the plane; the Mercedes-Benz
problem enumerates such meanders up to equivalence. Shown here is an example of a closed
meander of order 5.

Proof. If we map our system onto R
2 by taking the projection along the line x = y = z then

we obtain a picture identical to that corresponding to the Mercedes-Benz problem, i.e., we can
find a one-to-one mapping between the projection and the Mercedes-Benz diagram. Thus the
number of undirected closed loops crossing the Mercedes-Benz symbol will be identical to
the number of undirected RHCs. The factor of 2 corresponds to the fact that the heteroclinic
cycles are directed and hence we can trace the closed loops in either direction. �

We also consider the number of possible classes of RHC given a particular configuration
of equilibria, i.e., where the number of equilibria on each axis nx, ny, nz is known. In order to
do this we introduce some new notation.

Definition 5. Let Y be the subset of XG containing nx, ny, nz equilibria that are hyperbolic
sinks within the positive x, y and z axes respectively. Let T (nx, ny, nz) be the total number of
RHC classes in Y that include a subset of those equilibria nx, ny, nz. Let K(nx, ny, nz) be the
number of classes of RHCs including precisely those equilibria.

Lemma 2. The quantities above can be related as follows:

T (nx, ny, nz) =
∑

pi�ni∀i∈{x,y,z}

(
nx

px

)(
ny

py

)(
nz

pz

)
K(px, py, pz).

Proof. The quantity T (nx, ny, nz) is simply a sum of the classes contained by choice of pi out
of ni of the equilibria on each of the axes, times the number of classes visiting these equilibria.
Each class is clearly distinct, giving the sum as required. �

We can also note that the total number of classes obtainable using precisely n equilibria
(see lemma 1) is related to the quantity K above by

N(n) =
∑

nx+ny+nz=n

K(nx, ny, nz).

We were not able to find any formulae or recursion relations to help in the calculation of either
of the quantities T or K. However, we did find that certain choices of nx, ny, nz appeared to
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consistently give the minimum and maximum possible number of classes of RHC. Hence we
make the following conjecture.

Conjecture 1. The total number of classes of RHCs possible with n axes equilibria is bounded
below by the number of classes of RHCs possible when nx = n

2 , ny = n
2 , nz = 0 when n is

even or by nx = n+1
2 , ny = n−1

2 , nz = 0 when n is odd. It is bounded above by the number of
classes obtained by setting nx = n, ny = 0, nz = 0, where n = nx + ny + nz. More succinctly,

T
(n

2
,
n

2
, 0

)
� T (nx, ny, nz) � T (n, 0, 0)

for n even, or

T

(
n + 1

2
,
n − 1

2
, 0

)
� T (nx, ny, nz) � T (n, 0, 0)

otherwise.

We have verified this computationally up to n = 7. Furthermore it appears that as n is
increased, the bounds separate farther from any other possible value of T. We can also rewrite
the conjecture above in terms of coefficients K using our definition of T above, by writing

T (n, 0, 0) =
∑
p�n

(
n

p

)
K(p, 0, 0)

=
∑
p�n

(
n

p

)
2Mp

2

where Mp

2
is the closed meandric number of order p

2 and p is even. Also for n even we have

T
(n

2
,
n

2
, 0

)
=

∑
pi� n

2 ∀i∈{x,y}

( n
2

px

)( n
2

py

)
K(px, py, 0)

for all combinations K such that both of px, py are even. Finally, we have the result for n odd
where

T

(
n + 1

2
,
n − 1

2
, 0

)
=

∑
pi�ni∀i∈{x,y}

( n+1
2

px

)( n−1
2

py

)
K(px, py, 0)

where again we must choose px, py to be both even. This follows by firstly noticing from
the definition of the K that K(p, 0, 0) is precisely the number of equivalence classes of
directed closed loops passing through p points (i.e., 2MP

2
). It also makes use of the following

observation.

Lemma 3. All K are zero except for when we have an even number of points on all positive
axes or when we have an odd number of points on all positive axes. The former configuration
gives rise to a closed loop with the origin on the outside, the latter to a closed loop surrounding
the origin.

Proof. Consider any RHC on the boundary ∂O; this is a loop that divides ∂O into a single
inside (bounded) component and a single outside (unbounded) component. If the origin is
within the inside component (see, for example, figure 3) then there must be an odd number
of intersections on every positive axis. This is since the RHC must pass through the axis
transversely, so that nearby there must be a transition from inside to outside component. On
the other hand, if the origin is within the outside component then there must be an even number
of intersections on every positive axis. �



Classification of robust heteroclinic cycles for vector fields in R
3 with symmetry 8329

Table 4. Upper and lower bounds on classes of RHCOs for small values of n, together with similar
fields for RHCs. Also shown are the values of N(n) and N0(n) and the open meandric numbers
for comparison.

T ( n
2 , n

2 , 0)

n T0(1, n − 2, 0) T0(n − 3, 2, 0) T (n, 0, 0) or T ( n+1
2 , n−1

2 , 0) N0(n) N(n) mn

2 0 0 2 0 0 6 1
3 1 0 6 2 2 2 2
4 2 2 16 6 2 18 3
5 5 4 40 14 8 12 8
6 12 8 106 30 12 90 14
7 33 18 294 76 46 84 42
8 94 44 868 198 84 558 81
9 287 118 2676 526 304 640 262

10 904 338 8594 1430 566 3954 538
11 2959 1024 28446 4266 1982 5220 1828

Because of this result it is helpful to think of the ‘Mercedes-Benz’ sequence as being
two different sequences depending on whether n (and thus the nx, ny, nz) is even or odd. We
note also that there may well be more than one RHC in existence for a particular choice of
equilibria (for example, if we choose nx = ny = nz = 2 then we can obtain two RHCs of
three points, say P1C1P3C3P5C2P1 and P2C1P4C3P6C2P2 which do not intersect and can thus
theoretically coexist). However, if the origin is a part of the cycle we can only ever obtain one
class of RHCO for a given ordering of equilibria in the cycle.

We continue in the next section with a detailed look at RHCOs and we provide a similar
classification to that for RHCs.

3.2. RHCOs in O

We now shift our attention to the robust cycles including the origin as a point on the cycle.
We present a classification as with the RHCs, however this time, since we have chosen the
starting point as the origin, we assume the direction of the unstable manifold as passing
along the x-axis, and are confined to O, the direction of travel is determined. We define N0(n)

to be the number of distinct classes of RHCOs between n hyperbolic equilibria (this time
including the origin). Once again there is a strong connection with meandric numbers, but
unfortunately this time we are not afforded the luxury of association with a previously studied
sequence.

We can count classes of RHCOs of vector fields in XG for n a small number of equilibria
in the cycle, via observation or computation.

Theorem 3. The number of possible inequivalent RHCOs in XG is given by N0(n) = 0 for
n � 2, N0(3) = 2, N0(4) = 2, N0(5) = 8, N0(6) = 12. Examples of these cycles up to n = 5
can be seen in figures 5.

Proof. This is computed by using theorem 2 to enumerate all possible allowable codings. For
larger n the results are found computationally. Maple was used to generate many of the results
listed in table 4. �

As before we went on to look at particular configurations of axes equilibria, and introduce
here definitions in a similar fashion to the RHCs.
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Figure 5. Possible classes of RHCO for n = 3, 4 and 5. We see here that N0(3) = 2, N0(4) = 2
and N0(5) = 8.

Definition 6. Let Y be the subset of XG containing nx, ny, nz equilibria that are hyperbolic
sinks within the positive x, y and z axes respectively. Let T0(nx, ny, nz) be the total number
of RHCO classes in Y that include a subset of those equilibria nx, ny, nz. Let K0(nx, ny, nz)

be the number of classes of RHCs including precisely those equilibria.

Similarly to lemma 2 one can show that

T0(nx, ny, nz) =
∑

pi�ni∀i∈{x,y,z}

(
nx − 1

px − 1

)(
ny

py

)(
nz

pz

)
K0(px, py, pz)
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where px > 0 (or if px = 0 then we set T0(nx, ny, nz) = 0). One can get an expression
for N0(n) in terms of the K0 exactly as for N(n). We obtain the following conjecture upon
calculation of the T for small values of n.

Conjecture 2. The total number of classes of RHCOs possible with n equilibria (including the
origin) is bounded below by the number of classes of RHCOs possible when nx = n−3, ny = 2,

nz = 0 and above by the number when nx = 1, ny = n− 2, nz = 0, where n= nx + ny + nz + 1.

T0(n − 3, 2, 0) � T0(nx, ny, nz) � T0(1, n − 2, 0).

Both of these bounds can be written as before in terms of open meandric numbers by
observing that K0(i, 1, 0) = mi−1, and K0(1, j, 0) = mj for j odd or zero for j even. If the
conjecture is correct, this would imply for n odd that

2

(
n − 4

0

)
m0 + · · · + 2

(
n − 4

n − 4

)
mn−4 � T0(nx, ny, nz),

T0(nx, ny, nz) �
(

n − 2

1

)
m1 + 0m2 + · · · + 0mn−3 +

(
n − 2

n − 2

)
mn−2,

or if n is even then

2

(
n − 4

0

)
m0 + · · · + 2

(
n − 4

n − 4

)
mn−4 � T0(nx, ny, nz),

T0(nx, ny, nz) �
(

n − 2

1

)
m1 + 0m2 + · · · + 0mn−4 +

(
n − 2

n − 3

)
mn−3 + 0mn−2.

We have verified analytically that these hold at least up to n = 7.
The first few values for the upper and lower bounds here and for the RHC problem are

shown in table 4. Note that if the conjecture is true these will be optimum bounds since we
always have the possibility that the set-up is identical to that needed for one of the bounds. To
tie in with the rest of the paper we include the open meandric numbers, and values of N0(n)

and N(n).
It can be seen in table 4 that the quantity N0(n) is very close to the corresponding values

of the open meandric number mn. To demonstrate this we illustrate the two in figure 6. Only
the values for n � 10 are shown. The last four entries for N0(n) have been estimated by hand
but not yet confirmed computationally.

4. Discussion

We have introduced a new coding invariant that allows one to completely classify RHCs and
RHCOs inO with the symmetry group Z2

3 using a coding of the equilibria and planes involved.
Each coding represents a unique class of robust cycle and thus by finding all possible codings
we can classify all types of possible cycles up to equivalence. This classification should
allow, for example, a better understanding of the ‘successionally stable vector fields’ in the
three-species population models investigated by Schreiber [17] in that it classifies precisely
the possible orderings of visits to one-species equilibria.

As a new feature, we have demonstrated connections to the study of the combinatorics of
meanders and meandric numbers, and more precisely an equivalence of the Mercedes-Benz
sequence to classes of RHCs. For RHCOs the problem is closely related to that of meanders,
but we could find no such sequence for N0(n) in the literature, though were able to calculate the
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Figure 6. A plot of log(mn) and log(N0(n)) against n, the former given by the crosses and the
other by the circles. Note the apparently strong correlation between the two.

first few terms both analytically and computationally. The latter sequence is similar to the open
meandric number sequence but it is unclear whether this is significant. We have conjectured
upper and lower bounds based on meanders for specific configurations of equilibria.

We do not discuss the stability of the RHCs and RHCO but note that robust stability is
possible; see, for example, Krupa and Melbourne [11, 12] for conditions on the asymptotic
stability of RHCs. Note that RHCOs do not fall into the class of ‘simple’ robust cycles
they consider, with the consequence that other eigenvalues become important for stability of
RHCOs; see [5].

One might suspect that the results here (being driven by consideration of the topology of
plane meanders) do not apply to higher dimensional systems. However, this is not the case,
as long as some invariant subspaces of dimension 2 contain some of the connections. For
example, one extension of this work would be to consider RHCs for vector fields in R

4 with
respect to a symmetry group that has no fixed-point subspaces of dimension 3 (type A in [12]).
The RHCs we study in this paper are all of type A since we are working in R

3.
Finally, robust cycles with higher dimensional manifolds of connections can also appear

in more general symmetric systems; by analogy with the meanders here there should be a rich
topological structure in any case where the connecting manifolds are of codimension 1 within
some invariant subspace.
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Figure 7. An example of an RHC in R
3 with the symmetry group Z2

2. Both equilibria P1, P2
are hyperbolic sinks: the additional point Q1 between them produces the correct stabilities. All
connections are of saddle-sink type and thus the cycle is robust. This example is equivalent to the
closed meander of order 1.

Appendix A. The symmetry group Z2
2

In order for an RHC or an RHCO to arise, the group symmetry must preserve more than
one distinct invariant subspace; hence no robust cycle can be obtained if we have only the
symmetries produced by Z2.

For Z2
2 we can obtain RHCs (there is no distinction with RHCOs as the origin is not a

special point). These will all be of the form where all the equilibria in the cycle are on the
intersection of the two symmetry-invariant planes (i.e., on an axis). The trajectories will be
contained in these planes, and so we will have four copies of any cycle: one in each quadrant of
R

3. Furthermore we can completely classify the different equivalence classes of cycle possible.
This is done quite simply by noticing that given n hyperbolic saddles on the intersection (we
need at least one equilibria between these to produce the required stabilities), the number of
classes is given precisely by the closed meandric number of order n

2 . This again comes straight
from the definitions in the previous section, upon noticing that we can effectively make each
cycle two dimensional by looking at it from a point on the line x = z, y = 0 (i.e., we can form
a projection of the cycle onto the plane). This will then have precisely the form of a closed
meander. Note this method of projection is used implicitly throughout the paper to show the
relationship between RHCs and various types of meander. See figure 7 for an example.

Appendix B. The crossing conditions

Suppose we have a coding C1 = P1Cj1Pi1Cj2 . . . Cjn
for an RHC (or the similar coding for an

RHCO), and suppose Cjm
= Cjn

for some m 
= n. Then let the four points surrounding these
be relabelled as

Pim−1 = Q0, Pim = Q1, Pin−1 = Q2, Pin = Q3.

Then we must consider the possibilities below. By ‘crossing trajectories’ here we mean that
for any two trajectories contained in a plane Cj , there can be no point at which they intersect.
In what follows, if Qi and Qj are on the same axis, Qi < Qj ⇔ ‖Qi‖ < ‖Qj‖:

• If all four points are on the same axis. If (Q0 < Q2 < Q1 < Q3) or (Q0 < Q3 < Q1 <

Q2) or (Q1 < Q2 < Q0 < Q3) or (Q1 < Q3 < Q0 < Q2) or (Q2 < Q0 < Q3 < Q1)
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Figure 8. The additional pattern possible for n = 15 with third-order rotational symmetry as
referred to in the text of appendix C.

or (Q2 < Q1 < Q3 < Q0) or (Q3 < Q0 < Q2 < Q1) or (Q3 < Q1 < Q2 < Q0) then
we have crossing trajectories.

• If three points are on the same axis. If, for example, Q0 is on a different axis, then if
(Q2 < Q1 < Q3) or (Q3 < Q1 < Q2) then we have crossing trajectories. Similar
conditions apply when the other three points are chosen.

• If two points are on each axis. Then only possibilities of crossings are when Q0 and Q1

are on different axes. So, for example, if Q0 and Q2 are on the same axis, then if we have
(Q0 < Q2) and (Q3 < Q1) or (Q2 < Q0) and (Q1 < Q3) we have crossing trajectories.
Similarly, we get two more inequality sets if Q0 and Q3 are on the same axis.

If none of these inequalities hold for a particular coding, then we say that the crossing
conditions are satisfied.

Appendix C. Mercedes-Benz numbers; additional information

Note that for most values of n, the Mercedes-Benz numbers are divisible by 3. This is since
most patterns of equilibria and trajectories can be rotated by ± 2π

3 radians to create a different
class of cycles with the same overall pattern. Thus, in general, there will be three classes
arising from the rotations of any given cycle. However, if the cycle possesses rotational
symmetry of order 3, then we have extra classes that can appear. In such a case we must have
the same (odd) number of points on each axis so that nx = ny = nz, and further more the
pattern of trajectories about each axis must be identical. Thus all the numbers will be divisible
by 3 except for when n is 3 multiplied by an odd number. We can say a little more by looking
at the number of different patterns we can choose around each axis that retain the rotational
symmetry. For n = 3 this will be m1 = 1 = 1 mod 3 and for n = 9,m3 = 2 = 2 mod 3. For
n = 15, we have an additional pattern other than those arising from m5, namely that seen in
figure 8 and the same pattern flipped over, i.e., we have two extra cycles, so the total number
of classes will be m5 + 2 = 10 = 1 mod 3. As n is increased we find more and more of
these additional symmetric cycles, e.g. for n = 21, we can see that the total number of classes
should be m7 + 24 = 66 = 0 mod 3 as we find 12 unique extra symmetric patterns, which
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along with their reverses give the value of 24. According to the sequence these patterns hold
for all the numbers calculated (given up to n = 19 in [18]).
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